
Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

Regex-Based Pattern Matching in Digital Receipts:
Case Study on Split Bill Automation from GoFood Orders

Carlo Angkisan - 135230911,2

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523091@std.stei.itb.ac.id, 2carloangkisan21@gmail.com

Abstract—Group food ordering through services like
GoFood often presents challenges in fairly splitting the total
cost, especially when receipts include discounts, service
charges, and complex item details. This paper proposes an
automated bill-splitting system that utilizes regular
expression (regex)-based pattern matching to extract
structured information from GoFood digital receipts in PDF
format. The system processes each line of text to identify item
quantities, names, unit prices, and total costs, even when the
data spans multiple lines. Extracted data is then allocated to
each participant, and the system proportionally distributes
additional fees based on individual consumption. Built using
Python, FastAPI, PyMuPDF, and ReportLab, the system
enables users to upload receipts, assign items, and download
a PDF summary of individual payments. Testing shows the
system is accurate and efficient when applied to GoFood’s
consistent receipt format. In the future, this approach can be
extended to support receipts from other platforms by
dynamically adjusting regex patterns.

Keywords—regular expression; digital receipt; pattern

matching; bill splitting; GoFood

I. INTRODUCTION

In today's digital era, nearly all aspects of human life
have been digitized, including food purchasing
transactions. Food delivery applications such as GoFood
have become an integral part of modern lifestyles. The
convenience of ordering food from the palm of one’s hand
has made these platforms widely popular across various
demographics, from students to professionals.
Transactions that once required direct interaction have now
transformed into quick and automated digital processes.

This condition becomes even more relevant during
social gatherings with friends or family. In such situations,
it is common for people to place a group order through
GoFood. Besides being practical, this choice is often
driven by the reluctance to leave the house or by time and
energy constraints. With just one device and one account,
an entire group’s food needs can be fulfilled in a single
transaction.

However, collective ordering often comes with a
recurring problem, splitting the bill. A GoFood digital
receipt contains not only the price of each food item, but
also additional elements such as delivery fees, service
charges, and applied discounts. These factors introduce a

level of complexity to the cost-sharing process, especially
when done manually. Users must calculate each
individual’s share based on their respective orders while
also proportionally distributing the additional fees and
discounts.

If not handled properly, this process can result in
miscalculations and unclear responsibilities, which may
lead to discomfort or even misunderstandings among group
members. Thus, there is a need for a smart solution that can
extract relevant information from digital receipts and
automate the bill-splitting process.

This paper aims to explore the use of regex-based
pattern matching as a method for extracting information
from GoFood digital receipts and applying it to an
automated split-bill system. By leveraging the consistent
textual patterns found in these receipts, details such as item
names, quantities, unit prices, and total payments can be
accurately identified. This approach is expected to simplify
the cost-sharing process in group transactions and provide
a practical solution for users of digital food delivery
services.

II. THEORETICAL BASIS

2.1. Pattern Matching
Pattern matching is the process of identifying a specific

pattern within a given text. Formally, it involves:
• T: a long string (the text) consisting of n characters,
• P: a shorter string (the pattern) consisting

of m characters, where m << n.
The goal is to find the positions
within T where P appears.

Example:
• T: The quick brown fox jumps over the lazy dog
• P: jumps

Pattern matching is widely used in numerous
applications, including text editors, web search engines,
image analysis, bioinformatics, spam detection, and
increasingly, in the processing of digital documents such
as electronic purchase receipts.

Pattern matching can be grouped into three main
approaches which are exact matching, approximate
matching, and regex-based matching. Exact matching finds
patterns that match the text exactly without any
differences. For example, searching the word “jumps” in

mailto:113523091@std.stei.itb.ac.id
mailto:2author@gmail.com

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

the sentence “The quick brown fox jumps over the lazy
dog”. Common algorithms used include Naive Search,
Knuth-Morris-Pratt (KMP), and Boyer-Moore.
Approximate matching allows for minor differences, such
as typos or spelling variations. For example, the pattern
“color” may still match “colour”. Algorithm such as
Levenshtein Distance and Edit Distance are commonly
used. In regex-based matching patterns are defined using
regular expressions to match more complex structures,
such as \d+ for sequences of digits. This method is highly
flexible and useful for extracting information from
unstructured text, such as digital payment receipts
discussed in this paper.

2.2. Regular Expression (Regex)
A regular expression, often shortened to regex, is a

symbolic method used to search, identify, and process parts
of text based on defined patterns. Regex is commonly used
in string processing because it can effectively detect both
simple and complex text patterns in a flexible way. In the
context of digital receipts, regex is especially useful for
extracting important information such as the number of
items, item names, unit prices, and total costs, even when
the text layout is inconsistent or unstructured.

A regex pattern consists of a combination of normal
characters and special symbols, known as metacharacters.
When used together, they form rules that define what kind
of text should be matched. These patterns allow systems to
scan through large amounts of text and accurately extract
the needed details.

1. Metacharacters and Special Symbols
Metacharacters are symbols with special

meanings in regex. Commonly used metacharacters
include:
• . : matches any single character except

newline
• | : logical OR between patterns
• * : matches zero or more occurrences
• + : matches one or more occurrences
• ? : matches zero or one occurrence
• ^ : indicates the beginning of a line
• $: indicates the end of a line
• () : groups part of a pattern
• [] : defines a character class

2. Character Classes

Character classes allow matching one character
from a specified set:

Construct Description
[abc] matches one of: a, b, or c
[^abc] matches any character except a, b,

or c
[a-zA-Z] matches any uppercase or

lowercase letter
[0-9] matches any digit

3. Predefined Character Classes

To simplify expressions, several character classes
are predefined:

Construct Description
. matches any character (except

newline)
\d matches digits (0–9)
\D matches non-digit characters
\w matches alphanumeric characters

and underscores
\W matches non-alphanumeric

characters
\s matches whitespace (spaces, tabs,

newlines, etc.)
\S matches non-whitespace characters

4. Quantifiers and Repetition Operators

Quantifiers specify how many times an element in
a pattern must occur:

Construct Description
X? matches X zero or one time
X* matches X zero or more times
X+ matches X one or more times
X{n} matches X exactly n times
X{n,} matches X n or more times
X{n,m} matches X between n and m times

5. Boundary Matchers

Boundary matchers are used to define the position
of patterns in a line or word:

Construct Description
^ matches the beginning of a line
$ matches the end of a line
\b matches a word boundary
\B matches a position that is not a

word boundary

2.3. Digital Receipts in GoFood Service
Digital receipts are electronic proof of payment provided

to users after completing a transaction online. Unlike
traditional paper receipts, digital receipts are sent through
digital platforms such as email or mobile apps and can be
accessed anytime. These receipts contain essential details
including order summary, item prices, discounts, delivery
information, and payment methods.

GoFood is a food delivery service by Gojek that
connects users to nearby restaurants through its mobile
application. Every completed order on GoFood is
accompanied by a digital receipt as a form of
documentation and transaction validation.

A typical digital receipt from GoFood is highly
structured and includes:
• Item names and quantities
• Unit prices and total cost
• Discounts and additional charges
• Delivery details (address, distance, estimated time)
• Courier information
• Payment method

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

Fig. 1 GoFood Digital Receipt

(Source: Author’s documentation)

Digital receipts are also accessible directly through the
Gojek app. Users can open the Aktivitas tab, select a
completed order, and tap the Download bukti button to
retrieve the receipt in digital format.

Fig. 2 Accessing and Downloading Digital Receipts from

the Gojek App
(Source: Author’s documentation)

2.4. Split Bill Automation
A split bill is the process of dividing the total cost of a

transaction among several individuals who share in the
purchase. This practice is common in everyday situations
such as ordering food together, splitting transportation

fees, or participating in group shopping. The goal is to
ensure that each person pays only for the portion they used
or agreed upon.

However, manually splitting a bill often presents various
challenges. Users must calculate the total cost, include
additional fees such as delivery or taxes, and divide item
prices based on quantity and consumption. Errors in
calculation or allocation are frequent, especially when
there are many items or shared orders.

To address these challenges, automated split bill systems
have been developed. In such systems, users can upload a
receipt, such as a digital receipt from a food delivery
service. The system extracts item names, quantities, and
prices using techniques like regular expressions (regex).
Users can then assign items to participants, and the system
automatically calculates each person's total payment. Split
bill automation offers benefits such as time efficiency,
improved accuracy, and greater transparency in group
transactions, making cost-sharing more practical and
equitable.

III. IMPLEMENTATION

3.1. Research Limitation
This paper specifically limits its scope to the processing

of digital receipts in PDF format obtained from the GoFood
service. GoFood is selected due to its relatively consistent
receipt structure, which makes it easier to identify patterns
such as item quantity, product name, unit price, and total
amount. This limitation is applied because receipts from
other services or payment systems often exhibit highly
varied and non-standardized text structures, making it
difficult to generalize the extraction process using Regular
Expression (regex)-based methods.

3.2. Automated Split Bill Workflow
The implementation of the automated split bill system is

carried out through a structured series of processes,
beginning with the user uploading a digital receipt in PDF
format. The system will process the receipt and extract
important information using regular expression (regex)-
based pattern matching techniques. Extracted information
includes item names, purchase quantities, unit prices, and
total prices. Once the data is obtained, users can add a list
of participants involved in the transaction and assign each
item to one or more participants. The final step of this
system is to calculate the total cost to be paid by each
participant based on the items consumed, and to display
and export the results in the form of a bill summary.

In its implementation, this system utilizes several
supporting Python libraries. The fitz library from
PyMuPDF is used to extract text from PDF files.
The re library is used for regex-based pattern
matching. FastAPI is used to build a fast and lightweight
backend API. Pydantic is used for data validation through
input and output models. Meanwhile, ReportLabis utilized
to generate PDF documents as a summary of the bill split.

The system's workflow is designed to be user-friendly

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

and minimize manual intervention. With the relatively
consistent GoFood receipt patterns, the extraction and bill
splitting processes can be performed accurately and
quickly. Figure 3 illustrates the workflow of this system.

Fig. 3 Workflow of the automated split bill system

(Source: Author’s documentation)

3.3. Text Extraction from PDF Files
After the user uploads a digital receipt in PDF format,

the system performs an initial process of extracting the text
content from the document. This process is crucial because
the necessary information, such as menu names, purchase
quantities, unit prices, and total prices, is arranged in text
format scattered across multiple lines within the document.

To convert the visual layout of the PDF into a text format
that can be further processed, the system uses the
PyMuPDF library via the fitz module. Each PDF page is
read, then all found text is combined into a single string
with line separators. Subsequently, this text is re-separated
into a list of lines using the splitlines() function. This
structure allows the system to systematically analyze the
text line by line. The following code snippet is used to
perform this process:

Fig. 4 Text Extraction Process from PDF Using PyMuPDF

(Source: Author’s documentation)

The splitlines() function is used to separate the string
based on newline characters, resulting in a list of strings
where each element represents one line of extracted text.
This is vital as it allows the system to read and analyze the
text sequentially line by line.

With such a line-by-line list data structure, the system
can detect patterns representing important information like
item quantities, menu names, unit prices, and total prices.
This extraction format serves as the foundation for the next
stage, which is pattern matching using regular expressions

(regex), enabling the system to automatically recognize
and group data based on the typical semi-structured format
of GoFood receipts.

3.4. Pattern Matching with Regular Expressions
This step is the core of the data extraction process. Once

the text has been successfully extracted from the PDF file,
the system must identify key components such as the item
name, quantity, unit price, and total price. To do this, the
system first examines the consistent structure commonly
found in GoFood digital receipts.

In general, each item on a GoFood receipt is presented
in the following order: the quantity (a number), the menu
name (which may span one or more lines), the unit price
(preceded by the symbol @Rp), and the total price
(preceded by Rp). Based on this structure, specific regex
patterns are created to match the data accurately.

1. Quantity and Item Name: Due to irregular spacing
in text extracted from PDFs, two patterns are used
to handle different cases:
• The first pattern ^(\d+)\s+(.+) is applied when

the quantity and item name are on the same
line. In this pattern, the caret
symbol ^ matches the start of the line.
Then, (\d+) captures one or more digits as the
quantity, \s+ matches one or more spaces,
and (.+) captures the remaining characters as
the item name.

Fig. 5 Pattern for Quantity and Item Name in One Line

(Source: Author’s documentation)

• The second pattern ^(\d+)$ is used when the
line contains only the quantity. The
caret ^ still represents the beginning of the
line, (\d+) captures the numeric value, and the
dollar sign $ ensures that no other characters
follow on that line.

Fig. 6 Pattern for Quantity in a Separate Line

(Source: Author’s documentation)

2. Unit Price: The pattern ^@Rp([\d.]+)$ is used to
match the unit price indicated by the @Rp symbol
at the beginning. The dot is used as a thousands
separator, so it needs to be cleaned when converted
to a number.

Fig. 7 Regular Expression for Matching Unit Price

in GoFood Receipt
(Source: Author’s documentation)

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

3. Total Price: The pattern ^Rp([\d.]+)$ is similar to

the previous one, but without the @ symbol. This is
used to match the total price per item.

Fig. 8 Regular Expression for Matching Total

Price in GoFood Receipt
(Source: Author’s documentation)

4. Extraction of Specific Values: For values such as

total payment, discount, and handling fees, the
system uses fixed labels found on the receipt, such
as "Total pembayaran, "Diskon", or "Biaya lainnya"
The following function is used to capture these
values:

Fig. 9 Function for Extracting Values Based on

Fixed Labels in Receipt
(Source: Author’s documentation)

With these patterns, the system can accurately recognize

important parts of the digital GoFood receipt, as long as
there are no significant format changes. The results of this
regex process will be used in the subsequent stages for
calculation and cost allocation.

3.5. Implementation of Parsing and Menu Display
After Regex successfully matches patterns, the data is

stored in a Python dictionary structure by the
extract_items_from_pdf function within parser.py. This
data is then serialized into JSON for the frontend. The
primary data structure is a list of dictionaries for each item,
containing name, quantity, and unit_price. Additionally,
the dictionary also includes total_price, handling_fee,
other_fee, discount, discount_plus, and total_payment.

Example item data structure from parser.py

items.append({
 "name": name,
 "quantity": qty,
 "unit_price": unit_price
})

JSON Payload transmission to the frontend from main.py

return JSONResponse(content={
 "items": items,
 "total_price": total_price,
 "handling_fee": handling_fee,
 "other_fee": other_fee,
 "discount": discount,

 "discount_plus": discount_plus,
"total_payment": total_payment,

})

3.6. Implementation of Adding People and Assigning
Items

Users can add people and assign items through the
SplitRequest data structure in models.py, specifically its
assignments field. The SplitRequest includes a session_id,
a list of parsed Item objects, a list of
PersonAssignmentobjects, and overall cost and discount
details. Each PersonAssignment contains the name of the
person and a list of ItemAssignment objects, which
indicate the item_index and quantity of the item taken. The
frontend is responsible for user interaction in adding
people and assigning items, then sending the complete
SplitRequest data to the backend.

Fig. 10 Data Structure for Assigning Items to Participants

in the Split Bill System
(Source: Author’s documentation)

3.7. Implementation of Split Calculation
The bill split calculation is performed by the

calculate_split function within the split.py file. This
function takes a SplitRequest object as input and returns a
list of PersonSplitResult objects. The calculation steps are
follows:

1. Individual Subtotal Calculation: For each person
in data.assignments, the system iterates through
their item_assignment. The subtotal is calculated by
multiplying the item.unit_price by the
item_assignment.quantity. Validation ensures the
assigned quantity does not exceed the available item
quantity.
𝑆𝑢𝑏𝑡𝑜𝑡𝑎𝑙!"#$%& =)(𝑢𝑛𝑖𝑡_𝑝𝑟𝑖𝑐𝑒'(") × 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦*$$'+&",)

2. Total Subtotal Calculation: The total subtotal of

all items assigned to all people (subtotal_sum) is
calculated for proportional fee and discount
distribution.

𝑆𝑢𝑏𝑡𝑜𝑡𝑎𝑙!"" =	 * 𝑆𝑢𝑏𝑡𝑜𝑡𝑎𝑙#$%&'(
!""	#$%&'(&

3. Proportional Fee & Discount Calculation:

Handling fees (handling_fee), other fees
(other_fee), and total discounts
(total_discount = discount + discount_plus) are

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

proportionally divided based on each individual's
subtotal ratio to the overall total subtotal.

𝑃𝑟𝑜𝑝𝑜𝑡𝑖𝑜𝑛𝑎𝑙	𝑅𝑎𝑡𝑖𝑜 = 	
𝑆𝑢𝑏𝑡𝑜𝑡𝑎𝑙!"#$%&
𝑆𝑢𝑏𝑡𝑜𝑡𝑎𝑙'((

𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔	𝑆ℎ𝑎𝑟𝑒 = 𝑟𝑜𝑢𝑛𝑑(𝑃𝑟𝑜𝑝𝑜𝑡𝑖𝑜𝑛𝑎𝑙	𝑅𝑎𝑡𝑖𝑜	 × 	𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔	𝐹𝑒𝑒)

𝑂𝑡ℎ𝑒𝑟	𝑆ℎ𝑎𝑟𝑒 = 𝑟𝑜𝑢𝑛𝑑(𝑃𝑟𝑜𝑝𝑜𝑡𝑖𝑜𝑛𝑎𝑙	𝑅𝑎𝑡𝑖𝑜	 × 	𝑂𝑡ℎ𝑒𝑟	𝐹𝑒𝑒)
𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡	𝑆ℎ𝑎𝑟𝑒 = 𝑟𝑜𝑢𝑛𝑑(𝑃𝑟𝑜𝑝𝑜𝑡𝑖𝑜𝑛𝑎𝑙	𝑅𝑎𝑡𝑖𝑜	 × 	𝑇𝑜𝑡𝑎𝑙	𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡)

4. Final Individual Payment Calculation: Each

person's final payment is calculated by adding their
individual subtotal to their proportional share of
handling and other fees, then subtracting their
proportional discount share.

𝐹𝑖𝑛𝑎𝑙	𝑃𝑎𝑦𝑚𝑒𝑛𝑡!"#$%& =	𝑆𝑢𝑏𝑡𝑜𝑡𝑎𝑙!"#$%& + 𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔	𝑆ℎ𝑎𝑟𝑒
+ 𝑂𝑡ℎ𝑒𝑟	𝑆ℎ𝑎𝑟𝑒 − 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡	𝑆ℎ𝑎𝑟𝑒

The result is a PersonSplitResult object containing

the person's name, their total amount due, and the items
assigned to them.

3.8. Implementation of Extracting Results into a PDF
Once the bill-splitting calculations are completed, the

system generates a downloadable summary in PDF format.
This functionality is implemented in
the generate_split_pdf function located in
the pdf_generator.py file. The PDF is created using the
ReportLab library, and the process consists of several
structured steps:

1. Document Initialization: A SimpleDocTemplate
object is created, specifying the output file path
(e.g., output/split_summary_{session_id}.pdf) and
A4 page size.

Fig. 11 Initializing the PDF Document with

SimpleDocTemplate
(Source: Author’s documentation)

2. Title and Session Information: A "Split Bill

Summary" title and the session ID are added to the
document.

Fig. 12 Adding Title and Session ID to the PDF Output

(Source: Author’s documentation)

3. Per-Person Split Details: Each person gets a
section with their name, an item table (item name,
qty, unit price, subtotal). Proportional fee shares
and discounts are listed, and a bold red "Total
Bayar" (Total Payment) is displayed.

Fig. 13 Styling and Displaying Per-Person Item

Table in the PDF
(Source: Author’s documentation)

4. Final Summary: Displays total handling fee, other

fee, total discount, and "Total Pembayaran Akhir"
(Final Total Payment) for the whole bill.

Fig. 14 Final Summary Section in the PDF Output

(Source: Author’s documentation)

IV. RESULT AND DISCUSSION

Fig. 12 Sample of GoFood Receipt Used in Multi-Line

Pattern Matching Test
(Source: Author’s documentation)

Fig. 13 Extracted Menu Items Displayed After Successful

Multi-Line Pattern Matching
(Source: Author’s documentation)

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

Fig. 14 Final PDF Output of Bill Splitting from Multi-

Line Receipt Format (Scenario 1)
(Source: Author’s documentation)

Fig. 15 Sample of GoFood Receipt Used in Single-Line

Pattern Matching Test
(Source: Author’s documentation)

Fig. 16 Extracted Menu Items Displayed After Successful

Single-Line Pattern Matching
(Source: Author’s documentation)

Fig. 17 Final PDF Output of Bill Splitting from Single-

Line Receipt Format (Scenario 2)
(Source: Author’s documentation)

Testing was conducted on a system developed to extract

menu-related information using regular expressions
(regex), evaluated under two scenarios based on the layout
of digital receipts from GoFood. The objective of this
testing was to assess the accuracy of the regex patterns in
capturing key details, whether the data appeared on a single
line or was spread across multiple lines. The main focus of
this discussion is to evaluate the validity of the regex
patterns and the system’s ability to manage variations in
the textual layout of the receipt.

In the first scenario, all components quantity, item name,
unit price, and total price, were presented on the same line,
as shown in Figure 15. The testing results (Figure 16)
showed that the primary regex pattern used,
namely ^(\d+)\s(.+?)\s+@Rp([\d.]+)\s+Rp([\d.]+)$, was
able to correctly identify and extract each element. The
pattern successfully captured the quantity, followed by the
item name, and then the pricing components marked

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

by @Rp and Rp. The final result of the bill-splitting
process for this scenario is shown in Figure 17. These
findings indicate that the pattern is valid and effective for
standard single-line formats commonly found in GoFood
digital receipts.

The second scenario involved more complex layouts in
which the menu information was distributed across several
lines, as illustrated in Figure 12. For example, the quantity
might appear first, followed by the item name on the next
line, and pricing information on the line after that. Despite
this separation, the system was able to accurately recognize
and reconstruct the complete menu entry. The extracted
results are presented in Figure 13, and the final PDF
summary is shown in Figure 14. This was achieved by
designing the regex logic not to rely strictly on line-by-line
parsing, but rather on a contextual multi-line approach. The
system retains relevant data from previous lines and
intelligently combines them, identifying numeric values as
quantities, subsequent lines as item names, and following
lines as pricing details. This approach allows the system to
accurately process menu data even in receipts with non-
uniform layouts.

The system’s success in both scenarios highlights the
robustness of the regex-based approach in handling various
receipt formats. Rather than depending solely on exact line
matches, the system incorporates a buffering strategy that
enables it to merge information across multiple lines based
on logical structure. This method greatly reduces the
likelihood of parsing errors as long as the data follows a
consistent and interpretable format.

Beyond accurate menu extraction, the system is also
capable of proportionally distributing additional costs such
as discounts, handling fees, and other charges. This
allocation is based on each user’s share of the total
purchase, ensuring fairness and accuracy. As a result, the
system not only assigns menu items correctly but also
handles all related financial components in a transparent
and equitable manner.

Despite these positive outcomes, it is important to
recognize the system’s limitations. It was specifically built
to handle the structure of GoFood receipts, and therefore
may not perform as effectively on receipts from other
platforms with different layouts or formatting. The
reliability of the extraction process relies heavily on the
consistency of the receipt format. Nevertheless, within the
scope of this testing, the system has demonstrated strong
performance and high accuracy in extracting the intended
information.

V. CONCLUSION AND RECOMMENDATION

Regex based pattern matching has proven to be an
effective method for extracting structured information
from GoFood digital receipts in the context of automated
bill splitting. By using carefully designed regular
expressions and contextual multiline parsing, the system
can accurately identify item quantities, names, unit prices,
and total costs, even when the receipt layout is not uniform.

The implementation is able to handle both single line and
multiline formats reliably, ensuring fair cost distribution
including proportional allocation of additional fees and
discounts. Moreover, the user friendly interface allows for
smooth interaction, from uploading receipts to exporting
the final result in a clear PDF summary. These features
together simplify the process of bill splitting and reduce the
risk of manual calculation errors in group transactions.

Although the current system is specifically designed for
GoFood receipts, the approach used has strong potential to
be applied to other platforms. Future development is
recommended to expand support for receipts from services
like GrabFood, ShopeeFood, or retail stores, by extending
the regex pattern collection or implementing more flexible
matching strategies. To further enhance its capabilities, the
system should also be equipped with Optical Character
Recognition (OCR). This addition would allow the system
to read receipts in image format, such as photos or scans,
making it more flexible and useful in various situations.

VI. APPENDIX

The complete source code related to this paper can be
accessed through the following GitHub repository:
https://github.com/carllix/split-bill-app

A video explanation of the project is available at the
following link:
https://youtu.be/w-jEL1HM5_A

VII. ACKNOWLEDGMENT

The author would like to sincerely thank God Almighty
for His blessings and grace during the writing of this paper,
which made its completion possible. The author also
wishes to express deep appreciation to Dr. Ir. Rinaldi
Munir, M.T., lecturer of the IF2211 Algorithm Strategy
course, Class K02, for his valuable guidance and support.
The online learning resources he provided were especially
helpful in improving the author’s understanding of the
course material.

The author is also very grateful to their parents for their
continuous support, encouragement, and prayers, which
have been a great source of motivation and strength
throughout this journey.

Finally, the author would like to thank their friends,
especially the Split Bill group, for the enjoyable moments
spent together. Those experiences brought renewed energy
and made the process of writing this paper more enjoyable.

REFERENCES
[1] Munir, Rinaldi. 2024. “Pencocokan String (String/Pattern

Matching)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/23-Pencocokan-string-(2025).pdf (Diakses pada 23 Juni 2025)

[2] Khodra, Masayu Leylia. 2024. “String Matching dengan Regular
Expression”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-

https://github.com/carllix/split-bill-app
https://youtu.be/w-jEL1HM5_A
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-String-Matching-dengan-Regex-(2025).pdf

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

2025/24-String-Matching-dengan-Regex-(2025).pdf (Diakses pada
23 Juni 2025).

[3] Wibisono, Yudi dan Khodra, Masayu Leylia. 2020. “Modul
Praktikum Kuliah Pengantar Regular Expression”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2019-
2020/Modul-Praktikum-NLP-Regex.pdf (Diakses pada 23 Juni
2025)

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya
tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Carlo Angkisan
13523091

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-String-Matching-dengan-Regex-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2019-2020/Modul-Praktikum-NLP-Regex.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2019-2020/Modul-Praktikum-NLP-Regex.pdf

